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9.1 In this exercise, we will establish Birkho�'s theorem for spherically symmetric solutions to the
vacuum Einstein equations in 3 + 1-dimensions.

(a) Let (M3+1, g) be a Lorentzian manifold such that M = Q1+1 × S
2 and, in any local

coordinate chart (x0, x1) on Q and using the standard (θ, ϕ) coordinates on S
2, g takes

the form
g = g̃ABdx

AdxB + r2
(
dθ2 + sin2 θdϕ2

)
with A,B ∈ {0, 1} and:

* g̃AB and r depend only on x0, x1,

* r > 0.

Deduce that (M, g) is spherically symetric, i.e. SO(3) acts isometrically on (M, g) with
spherical orbits. Show also that, around any point p ∈ Q, there exists a local coordinate
system (u, v, θ, ϕ) around {p} × S

2 such that

g = −Ω2(u, v)dudv + r2(u, v)
(
dθ2 + sin2 θdϕ2

)
.

(such a coordinate system is called double null). Hint: Use Exercise 2.3.

Remark. It can be shown that any spherically symmetric spacetime can be expressed
locally in the above form.

(b) Assume that (M, g) above satis�es the vacuum Einstein equations Ricαβ = 0. In dou-
ble null coordinates, it can be easily calculated that this system of equations takes the
following form in terms of the metric components Ω and r:

∂u∂v(r
2) = −1

2
Ω2,

∂u∂v log(Ω
2) =

Ω2

2r2
(
1 + 4Ω−2∂ur∂vr

)
,

∂u(Ω
−2∂ur) = 0,

∂v(Ω
−2∂vr) = 0.

(note that this is an overdetermined system; this is why, at the end of the day, Birkho�'s
theorem holds). Show that the quantity m : Q → R de�ned by

m
.
=

r

2

(
1− gαβ∂αr∂βr

)
=

r

2

(
1 + 4Ω−2∂ur∂vr

)
(which is known as the Hawking mass of the sphere {p} × S

2) is locally constant on Q.

(c) Let gM be the Schwarzschild metric for M ∈ R. Show that, in this case, m = M .

(d) Let p ∈ Q and assume, without loss of generality, that (u(p), v(p)) = 0. Show that there
exists an open neighborhood U of {p} × S

2 in M and an open neighborhood USch of a
point q in the maximally extended Schwarzschild spacetime with M = m(p) (chosen so
that r(q) = r(p)) which are isometric. Hint: Choose coordinates u, v on USch so that the
functions ∂ur(u, 0) and ∂vr(0, v) are the same in both spacetime domains. Deduce that the
functions r(u, v) and Ω(u, v) are the same for both spacetime domains, using the system
of equations.
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9.2 Let (M, g) be a Lorentzian manifold and S ⊂ M be a submanifold. For any vector �eld
W along S which is orthogonal to S, we will de�ne the associated second fundamental form
χ(W ) : Γ(S)× Γ(S) → R by the relation

χ(W )(X, Y )
.
= g(∇XW,Y ),

where ∇ denotes the connection of g and we think of X, Y as being extended to vector �elds
in M.

(a) Show that χ(W ) is well de�ned independently of the choice of extensions of X, Y . Show
also that it is a symmetric (0, 2)-tensor �eld.

(*b) Assume that S is spacelike; we will also denote the induced (Riemannian) metric on S by

h. Let W be a non-vanishing vector �eld on M which is orthogonal to S and let Φ
(W )
t be

the �ow map of W . For the one parameter family of surfaces St = Φ
(W )
t (S), with induced

metrics ht, show that, in any coordinate chart (x1, x2) on Stwhich is transported along
the �ow of W :

d

dt

√
det(ht)

∣∣∣
t=0

= trhχ
(W ) ·

√
det(h),

where trhχ
(W ) .

= hABχ
(W )
AB For this reason, trhχ

(W ) is usually called the expansion in the
direction of W , since it measures the rate of change of the volume form of S. (Hint: You
might want to use Jacobi's formula from linear algebra: d

dt
log(detM) = tr(M−1 d

dt
M) for

a square-matrix valued function M(t).)

(c) We will now restrict to the case when M is 3 + 1 dimensional and time oriented and that
S is a 2-dimensional surface.. in that case, at each point p ∈ S, the normal bundle TS⊥

is spanned by two future directed null vector �elds along S, which we will denote with
L and L. We will also denote the induced (Riemannian) metric on S by h. We will say
that such a surface S is trapped if it is compact and, at every point on S, both null
expansions are negative, i.e.

trhχ
(L), trhχ

(L) < 0.

Show that, on the maximally extended Schwarzschild spacetime, the spheres of symmetry
are trapped if and only if they correspond to points in the region II of the Penrose diagram
(i.e. the black hole region).

Remark. We will later see in class that, as a consequence of Penrose's incompleteness theorem, if
an asymptotically �at spacetime contains a trapped surface S, then this is necessarily inside a black
hole, i.e. J+[S] does not reach future null in�nity I +. Since the condition de�ning a trapped surface
is anopen condition, a trapped surface remains trapped even under small changes of the metric; thus,
small perturbations of Schwarzschild spacetime still contain a black hole.

9.3 Let

Tµν [ϕ] = ∂µϕ∂νϕ− 1

2
gµνg

αβ∂αϕ∂βϕ
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be the energy momentum tensor associated to the scalar wave equation □gϕ = 0 on (M, g)
(recall that □g

.
= gαβ∇α∇βϕ = 1√

−detg
∂α

(√
−detggαβ∂β

)
). For the �rst two questions, we will

not assume that ϕ : M → R solves any particular equation.

(a) Show that, for any ϕ ∈ C∞(M), any p ∈ M and any two future oriented causal vectors
V,W ∈ TpM:

Tµν [ϕ]V
µW ν ⩾ 0

(Hint: Choose a suitable double null frame in TpM). If V,W are moreover timelike, show
that

Tµν [ϕ]V
µW ν ⩾ c

n∑
i=0

|∂iϕ|2,

with the constant c > 0 depending on V,W , g and the choice of local coordinates (but is
independent of ϕ).

(b) Assume, now, that ϕ solves □gϕ = 0. Show that

(divT [ϕ])ν
.
= gαβ∇αTβν [ϕ] = 0.

(c) Show that, if, in addition, V is a Killing vector �eld of (M, g), then the 1-form JV
ν [ϕ]

.
=

Tµν [ϕ]V
µ is divergence free, i.e.

divJV [ϕ]
.
= gαβ∇αJ

V
β [ϕ] = 0.

9.4 Let f : [0, T ] → [0,+∞) satisfy

f(t) ⩽ A(t) +

� t

0

M(s)f(s) ds

for some non-negative functions A,M on [0, T ]. Show that

f(t) ⩽ A(t) +

� t

0

e
� t
s M(x) dxM(s)A(s) ds.

In particular, if A(t) = A is constant, show that

f(t) ⩽ e
� t
0 M(s) dsA.

This is known as Gronwall's inequality ; this inequality will play a crucial role in establishing
energy-type estimates for hyperpolic PDEs. (Hint: You might want to �rst consider the di�er-
ential inequality satis�ed by F ′(t) for F (t) being the right hand side of the inequality we start
with. )
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